Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
The Boltzmann Transport Equation (BTE) for phonons is often used to predict thermal transport at submicron scales in semiconductors. The BTE is a seven-dimensional nonlinear integro-differential equation, resulting in difficulty in its solution even after linearization under the single relaxation time approximation. Furthermore, parallelization and load balancing are challenging, given the high dimensionality and variability of the linear systems' conditioning. This work presents a 'synthetic' scalable parallelization method for solving the BTE on large-scale systems. The method includes cell-based parallelization, combined band+cell-based parallelization, and batching technique. The essential computational ingredient of cell-based parallelization is a sparse matrix-vector product (SpMV) that can be integrated with an existing linear algebra library like PETSc. The combined approach enhances the cell-based method by further parallelizing the band dimension to take advantage of low inter-band communication costs. For the batched approach, we developed a batched SpMV that enables multiple linear systems to be solved simultaneously, merging many MPI messages to reduce communication costs, thus maintaining scalability when the grain size becomes very small. We present numerical experiments to demonstrate our method's excellent speedups and scalability up to 16384 cores for a problem with 12.6 billion unknowns.more » « less
-
IscB proteins are putative nucleases encoded in a distinct family of IS200/IS605 transposons and are likely ancestors of the RNA-guided endonuclease Cas9, but the functions of IscB and its interactions with any RNA remain uncharacterized. Using evolutionary analysis, RNA sequencing, and biochemical experiments, we reconstructed the evolution of CRISPR-Cas9 systems from IS200/IS605 transposons. We found that IscB uses a single noncoding RNA for RNA-guided cleavage of double-stranded DNA and can be harnessed for genome editing in human cells. We also demonstrate the RNA-guided nuclease activity of TnpB, another IS200/IS605 transposon-encoded protein and the likely ancestor of Cas12 endonucleases. This work reveals a widespread class of transposon-encoded RNA-guided nucleases, which we name OMEGA (obligate mobile element–guided activity), with strong potential for developing as biotechnologies.more » « less
An official website of the United States government
